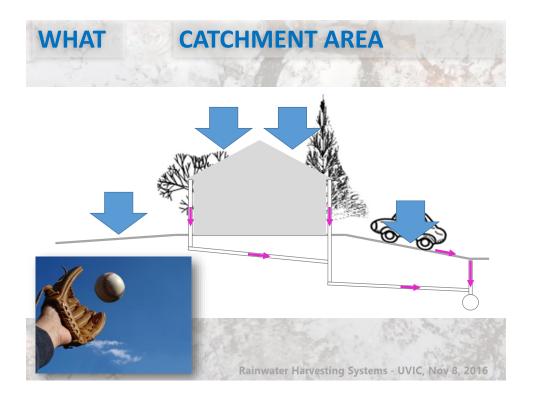
Rainwater Harvesting Systems

Components Process (design) Research

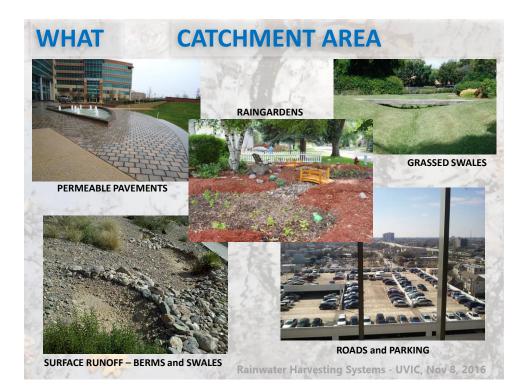
Ken Nentwig

BLA MLA CLM CLD ARCSA-AP and Trainer

Rainwater Harvesting Systems - UVIC, Nov 8, 2016


RAINWATER HARVESTING SYSTEMS of good quality and suitablity:

ARE NOT OFF-THE-SHELF PRE-PACKAGED


ARE NOT THE SAME FOR NEAR-IDENTICAL SITES

- ARE NOT ROCKET SCIENCE, BUT REQUIRE CAREFUL CONSIDERATIONS and CALCULATIONS
- ARE NOT ALWAYS THE BEST SOLUTION to water-related problems
- MAY NOT RESEMBLE ANYTHING YOU WILL SEE IN THIS PRESENTATION

WEB-BASED INFO CAN BE GOOD or BAD, no guarantees

WHAT CATCHMENT AREA

QUALITY

Rainwater pH = normally 5.5 to 6.5, slightly acidic

Absorbs/carries chemicals and substances, needs treatment

Different surfaces have various components

Asphalt = ~80% carbon, ~10% hydrogen

~5% oxygen, + nitrogen + sulphur

- Shingles = granules containing copper (algicide western)
- Cedar shakes = fire retardants

Roads/Parking = heavy metals (vehicle emissions, oil and gas, etc)

Metal = if coated with NSF protocol 151 potable-grade paint

WHAT CATCHMENT AREA

QUALITY

Leaves/needles and plant parts (twigs, bark, flowers, moss)

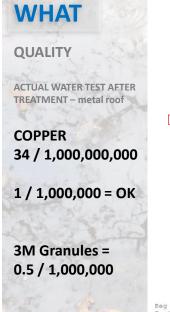
- "compost (gutter) tea"
- organic, affect colour, taste, odour
- fruit/nuts, pollen
- some parts can be poisonous

Animal feces (birds, squirrels, racoons, rats, etc)

Dust and particulate matter (construction, industry)

Ambient chemicals (agriculture, landscape, cleaning)

Rainwater Harvesting Systems - UVIC, Nov 8, 2016


WHAT CATCHMENT AREA

Asphalt (Bitumen)

...elemental analyses indicate that most asphalts contain 79–88 weight per cent (wt%) carbon, 7–13 wt% hydrogen, traces to 8 wt% sulfur, 2–8 wt% oxygen, and traces to 3 wt% nitrogen.

Limited data are available on the concentration of asphalt in environmental media. Characterization of concentrations of asphalt fractions in air samples and plant samples collected at various distances from a highway indicated that these concentrations were <4 \times 10–3 mg/m3 and <4 mg/g dry plant material, respectively. An assessment of the effects of runoff from asphalt pavement on streams in California, USA, indicated that concentrations of all polycyclic aromatic hydrocarbon (PAH) analytes in all stream and road runoff samples were below the detection limit of 0.5 µg/litre. Although detectable levels of heavy metals were present in stream and runoff water, the authors concluded that no significant upstream versus downstream differences existed in the concentration of any heavy metal across all streams. Metal concentrations were elevated in runoff water from road surfaces relative to upstream samples. These elevated concentrations could be due to sources other than asphalt (e.g., vehicle emissions, crankcase oil drippings, etc.).

Concise International Chemical Assessment Document 59, World Health Organization, 2004 Rainwater Harvesting Systems - UVIC, Nov 8, 2016

Sample: Rain 13Mar14 11:00a

					Maximum Limits Permissible
	ELEMENTS		SAMPLE	UNITS	In Drinking Water*
1)	Aluminium	Al	<0.065	mg/L	no limit listed
2)	Antimony	Sb	<0.500	ug/L	6.00 ug/L
3)	Arsenic	As	<0.500	ug/L	10.0 ug/L
4)	Barium	Ba	0.011	mg/L	1.00 mg/L
5)	Beryllium	Be	<0.003	mg/L	no limit listed
6)	Boron	в	<0.050	mg/L	5.00 mg/L
7)	Cadmium	Cd	<0.100	ug/L	5.00 ug/L
8)	Calcium	Ca	0.211	mg/L	200 mg/L
9)	Chromium	Cr	<0.010	mg/L	0.050 mg/L
10)	Cobalt	Co	<0.020	mg/L	no limit listed
11)	Copper	Cu	0.034	mg/L	1.00 mg/L
12)	Gold	Au	<0.040	mg/L	no limit listed
13)	Iron	Fe	0.011	mg/L	0.300 mg/L
14)	Lanthanum	La	<0.020	mg/L	no limit listed
15)	Lead	Pb	2.18	ug/L	10.0 ug/L
16)	Magnesium	Mg	0.172	mg/L	50.0 mg/L
17)	Manganese	Mn	0.006	mg/L	0.050 mg/L
18)	Molybdenum	Mo	<0.020	mg/L	no limit listed
19)	Nickel	Ni	<0.050	mg/L	no limit listed
20)	Phosphorus	P	0.049	mg/L	no limit listed
21)	Potassium	K	0.060	mg/L	no limit listed
22)	Scandium	Sc	<0.050	mg/L	no limit listed
23)	Silicon	Si	<0.030	mg/L	no limit listed
24)	Silver	Ag	<0.010	mg/L	0.050 mg/L
25)	Sodium	Na	1.26	mg/L	200 mg/L
26)	Strontium	Sr	<0.002	mg/L	no limit listed
27)	Titanium	Ti	<0.010	mg/L	no limit listed
28)	Tungsten	W	<0.050	mg/L	no limit listed
29)	Vanadium	v	<0.010	mg/L	no limit listed
30)	Zinc	Zn	<0.001	mg/L	5.00 mg/L
Har	dness (mg/L	CaCO3)	1.24	mg/L	0-75 mg/L = soft
pH			6.58	units	6.5 to 8.5

* As per Canadian or B.C. Health Act Safe Drinking Water Regulation BC Reg 230/92, 4 390 Sch 120, 2001. Task Force of Canadian Council of Resource 4 Envir. Ministers Guidelines for Canadian Drinking Water Quality, 1996. Ammend. Health Canada (2006).

Comments:

All constituents tested meet Canadian and B.C. drinking water standards.

WHAT

CATCHMENT AREA

QUANTITY

VOLUME =

AREA x DEPTH*

*conversion factor may be required

1 mm on 1 sq m = 1 litre 1 in on 1 sq ft = 0.623 US gal = 0.52 Imp gal

Roof area = Annual rainfall = 100 sq m (1,100 sq ft) 850 mm (33.5 in)

V = A x D 100 sq m X 850 mm = 85,000 litres (85 cu m)

V = A x D 1,100 sq ft X 33.5 in X 0.623 = 22,950 US gal 1,100 sq ft X 33.5 in X 0.52 = 19,160 Imp gal

CATCHMENT AREA

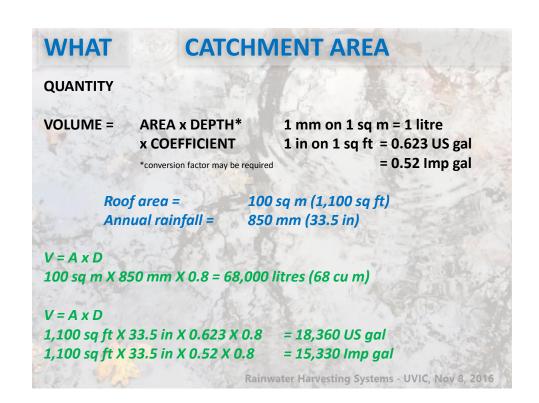
QUANTITY

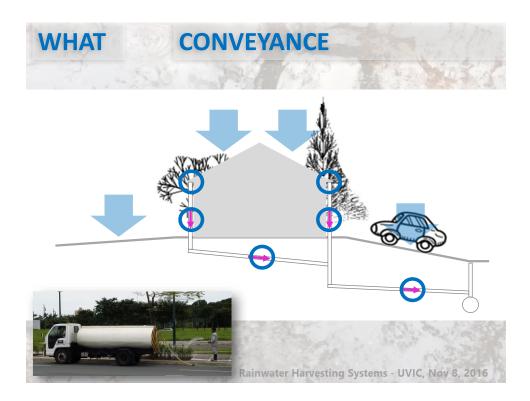
WHAT

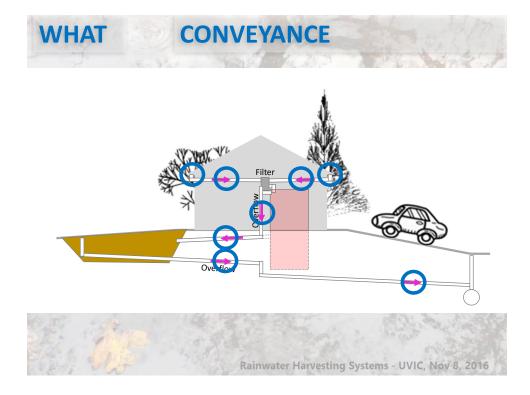
Runoff Coefficient Table

Area Description	Runoff Coefficient C	Character of surface	Runoff Coefficient		
Business		Pavement			
Downtown	0.70-0.95	Asphaltic and	0.70-0.95		
Neighborhood	0.50-0.70	concrete	0.70-0.95		
Residential		Brick	0.70-0.85		
Single-Family	0.30-0.50	Roofs	0.75-0.95		
Multiunits, detached	0.40-0.60	Lawns, sandy soil			
Multiunits, attached	0.60-0.75	Flat, 2 percent	0.05-0.10		
Residential	0.25-0.40	Average, 2-7 percent	0.10-0.15		
(suburban)	0.25-0.40	Steep, 7 percent	0.15-0.20		
Apartment	0.50-0.70	Lawns, heavy soil			
Industrial		Flat, 2 percent	0.13-0.17		
Light	0.50-0.80	Average, 2-7 percent	0.18-0.22		
Heavy	0.60-0.90	Steep, 7 percent	0.25-0.35		
Parks, cemeteries	0.10-0.25				
Playgrounds	0.20-0.35]			
Railroad yard	0.20-0.35]			
Unimproved	0.10-0.30				

http://www.ems-i.com/wmshelp/Hydrologic_Models/Models/Rational/Equation/Runoff_Coefficient_Table.htm


Rainwater Harvesting Systems - UVIC, Nov 8, 2016


WHAT

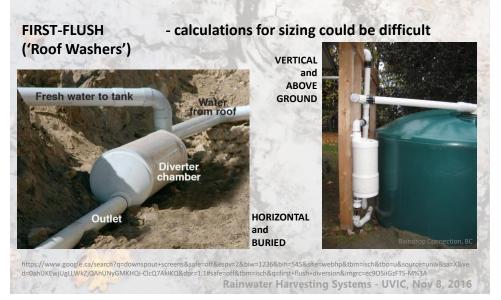

CATCHMENT AREA

QUANTITY	Surface Type	Infiltration/L	.oss* Ru	Runoff Coefficient**			
RUNOFF COEFFICIENTS	Roofs 5% to 25% 75% to 95%						
('Efficiency Factor')	* Infiltration is minimal in most roof surfaces, and for annual averages of collection could be fairly insignificant; Losses are due to spillage, leakage, evaporation, filtering, and wind. **Runoff Coefficient is taken from several sources, and is pretty much standard across all of them.						
Pavement Material	Infiltration/A	bsorption*	Runoff Coeffi	cient*			
A CONTRACTOR				cient			
Asphalt, Concrete	5% to	25%	75% to 95				
Asphalt, Concrete Paving Stone	5% to 20% to		75% to 95 65% to 80	<mark>%</mark>			
	20% to	35%		% %			
Paving Stone	20% to ones 40% to	9 35% 9 80%	65% to 80	% % %			

*Derived and compiled from various sources; estimates a	re based on averages from differnet studies.
This is a representative overview, manufacturer's recomm	endations and statistics should be used.

WHATCONVEYANCE + FILTRATIONQUALITYGUTTERS- keep clean, no debris build-up- slope to drain, no standing water- screen to keep debris out (optional)- eliminate barriers to water movementImage: Standard Sta

https://www.google.ca/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#safe=off&q=downspout+screens https://www.google.ca/search?q=downspout+screens&safe=off&espv=2&biw=1236&bih=545&site=webhp&tbm=isch&tbo =u&source=univ&sa=X&ved=0ahUKEwjUgLLWkZJQAhUNyGMKHQi-ClcQ7AkIKQ&dpr=1.1 Rainwater Harvesting Systems - UVIC, Nov 8, 2016



QUALITY

QUALITY

FIRST-FLUSH - calculations for sizing could be difficult ('Roof Washers')

High Contamination [®]	Medium Contamination	Low Contamination ^ь							
5.0 mm (0.20 in.)	2.0 mm (0.08 in.)	0.5 mm (0.02 in.)							
^a High contamination is considered to have high content of <u>organic debris from animal waste, adjacent trees,</u> <u>and/or airborne contamination.</u> ^b Low contamination is considered to either have <u>frequent rainfall</u> to keep the collection surface clean and/or <u>minimal nontoxic contamination.</u>									

Rainwater Harvesting Systems - UVIC, Nov 8, 2016

WHAT CONVEYANCE + FILTRATION

QUALITY

FIRST-FLUSH - calculations for sizing could be difficult ('Roof Washers')

Roof area =100 sq mFirst-Flush rainfall =1.0 mm

the and she with		Area	Length	Volume	Req'd Length
100 sq m X 1.0 mm	dia (mm)	area m(2)	m	litres/m	m
= 100 litres (0.1 cu m)	75	0.004	1	4.4	22.6
A Salar the	100	0.008	1	7.9	12.7
and the second second	150	0.018	1	17.7	5.7
	200	0.031	1	31.4	3.2
	250	0.049	1	49.1	2.0
the Cart is	300	0.071	1	70.7	1.4
Cert Shit	Rair	water Harve	esting System	ms - UVIC, M	Nov 8, 2016

QUALITY

FIRST-FLUSH - calculations for sizing could be difficult ('Roof Washers')

Roof area =1,000 sq ftFirst-Flush rainfall =0.1 in

and and the to		Area	Length	Volume	Req'd Length
Canada Tarta and	dia (in)	area ft(2)	ft	US gal/ft	ft
1,000 sq ft X 0.1 in X 0.623	3	0.049	1	0.4	169.9
= 62.3 US gal	4	0.087	1	0.7	95.5
1,000 sq ft X 0.1 in X 0.52	6	0.196	1	1.5	42.5
= 52 Imp gal	8	0.349	1	2.6	23.9
255 - 102 - 104	10	0.545	1	4.1	15.3
the for a start	12	0.785	1	5.9	10.6
	Rainw	ater Harvestin	a Suctome	- UVIC N	01 8 2016

<section-header><complex-block>

QUALITY

FILTRATION

100 to 200 sq m roof area (intensity)

Debris filter upstream

Less effective in low intensity

Water follows inside of piping, swirls automatically (Vortex), passes onto sieve mesh

Mesh is dry, water passes over it, acts as first-flush system

Mesh gets wet, water capilliaries through (Wicking), debris left in center

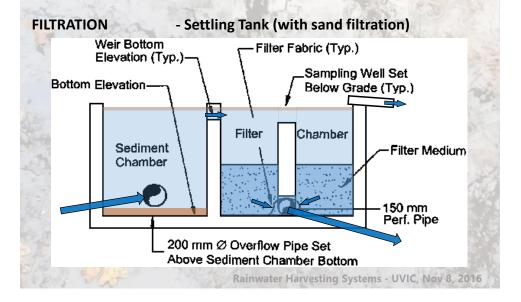
Waste water/debris to storm drain

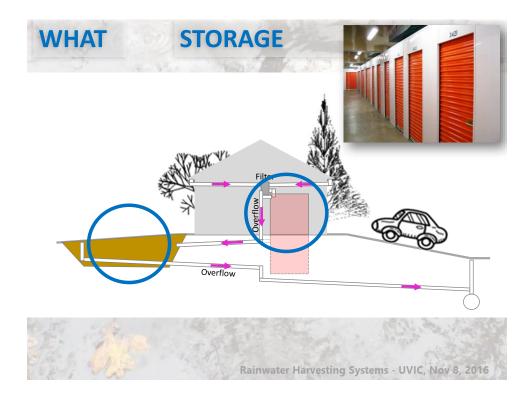
QUALITY

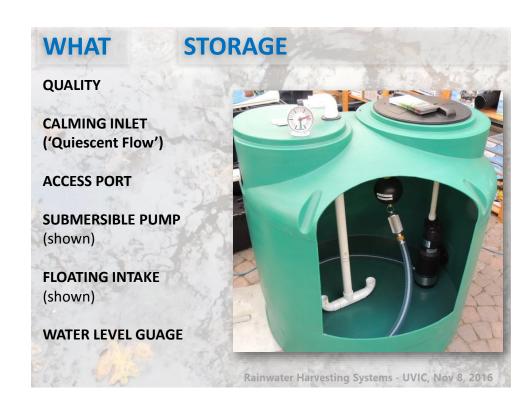
'BASKET' FILTRATION

- acts as calming inlet (quiescent flow)

'Tuffy' filtration insert available (www.livingspringswater.ca)

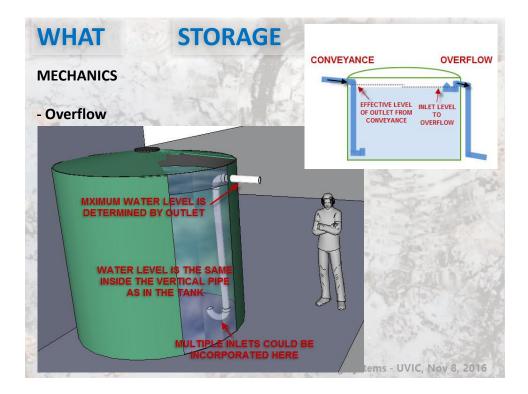

https://www.google.ca/search?q=rainwater+ta nk+filters&safe=off&espv=2&biw=1236&bih=5 45&thm=isch&tbo=u&source=univ&sa=X&ved =0ahUKEwiZmbrsSJnQAhUFzWMKHdhRCIUQ7 AkIVA#imgrc=BB3XCAIVc6Gs4M%3A

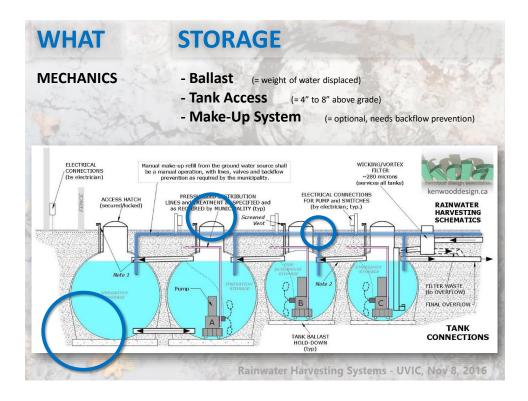

Simple operation and maintenance

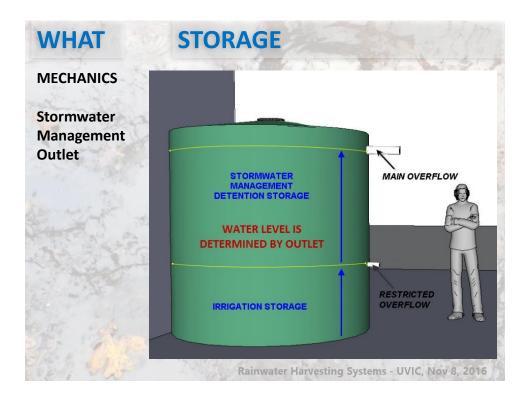


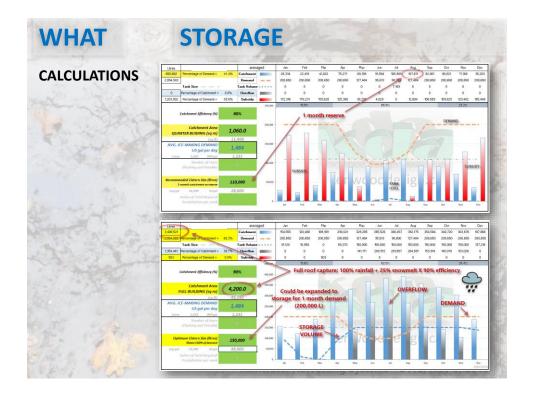
<section-header><section-header><section-header><section-header><section-header><section-header><text><text>

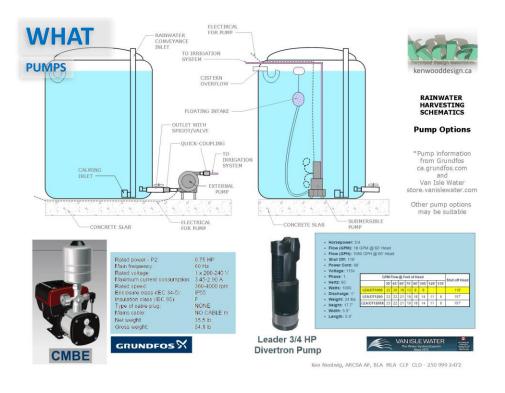
QUALITY











WHAT			ST	O F	RAG	GE	- MOI	NTHLY	RAINF	ALL D	ATA, V	ICTOR	IA, BC
J.		- 34			me	1. 1				18 2		100	1.1
Rainfall (mm)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Gonzales	85.2	68.1	45.3	28.5	25.8	20.7	14	19.7	27.4	51.1	95.5	101.9	583.1
Victoria - Phyllis St	99.4	72.7	50.9	36.1	34.2	25.5	16.1	23.8	25.9	66.7	129	105.8	686.1
Central Saanich Veyaness	121	94.7	72.1	47.8	35.9	30.7	19	26.4	27.9	67.1	141.3	134.3	818.1
Central Saanich Island View	118.4	91.1	67.2	44	36.5	31.8	20.8	27.1	31.6	78.6	142.6	132.9	822.5
Victoria Int'l Airport	121.8	98.8	75.8	44.5	36.5	32	19.5	23.9	30.4	75.6	144.4	138.3	841.4
Saanichton CDA	126.8	98.7	75.5	46.5	38.9	35	20.6	27.8	31.7	79.3	154.4	144.6	879.8
Saanichton Mt Newton	140.5	98.5	76.1	54.6	42.7	36	20.7	24.4	28.6	82.1	163.8	137.4	905.3
Metchosin	148.6	110.2	84.6	53.8	36.7	27.3	17.8	23.9	34.3	96.1	187.9	162.5	983.8
Colwood - Hatley Dr	158.9	111	75.7	59.7	38.9	29.5	19.2	22.1	30.5	106.5	201.1	145.7	998.9
Metchosin - Happy Valley	174.2	123.8	98.3	62.5	39	28.9	19.7	26.6	38.8	107.4	201.2	174	1094.4
Shawnigan Lake	172.2	139	114.7	64.9	48.7	40.2	24.7	29.3	37.6	104.2	207.2	189.5	1172.2
Victoria Marine	188.5	145.8	100.1	73.8	47	30.6	23.2	33.2	41.8	109.9	224.7	190.3	1208.8
Sooke Lake North	208.7	166.9	139	80.4	53.5	43.3	26.6	32.4	43	132.1	257.4	230.2	1413.3
State La	and a		123		Rain	water	Harve	sting	Systen	15 - U\	/IC, N	ov 8, 2	016

20

Rainwater Harvesting Systems

Ken Nentwig

ken@canarm.org ken.nentwig@gmail.com 250 999 2472 604 757 1805